# Kentucky <br> Transportation Center 

## College of Engineering

# UK <br> UNIVERSITY OF KENTUCKY <br> College of Engineering <br> Kentucky Transportation Center 

## Our Mission

We provide services to the tronsportation community through research, technology transfer and education. We create and participate in partnerships to promote safe and effective transportation sustems.

## We Value...

Teamwork -- Listening and Communicating, Along with Courtesu and Respect for Others
Honesty and Ethical Behavior
Delivering the Highest Quality Products and Services
Continuous Improvement in All That We Do

For more information or a complete publication list, contact us

## KENTUCKY TRANSPORTATION CENTER

176 Raymond Building
University of Kentucky
Lexington, Kentucky 40506-0281
(859) 257-4513
(859) 257-1815 (FAX) 1-800-432-0719
www.ktc.uky.edu
ktc@engr.uky.edu

| 1. Report No. KTC 05-35-KH50-05-1F | 2. Government Accession No. |  | 3. Recipient's Catalog No. |  |
| :---: | :---: | :---: | :---: | :---: |
| 4. Title and Subtitle Cumberland Gap Tunnel Pavement Problem |  |  | 5. Report Date October 2005 |  |
|  |  |  | 6. Performing Organization Code |  |
|  |  |  | 8. Performing Organization Report No. KTC 05-35-KH50-05-1F |  |
| 7. Authors Brad Rister |  |  | 10. Work Unit No. (TRIAS) |  |
| 9. Performing Organization Name and Address University of Kentucky College of Engineering Kentucky Transportation Center 176 Oliver Raymond Building Lexington, KY 40506-0281 |  |  | 11. Contract or Grant No. KTC 05-35-KH50-05-1F |  |
| 12. Sponsoring Agency Name and Address Kentucky Transportation Cabinet 200 Mero Street Frankfort, KY 40622 |  |  | 13. Type of Report and Period Covered Final |  |
|  |  |  | 14.Sponsoring Agency Code |  |
| 15. Supplementary Notes <br> Prepared in cooperation with the Federal Highway Administration, US Department of Transportation |  |  |  |  |
| 16. Abstract: Ground Penetrating Radar was used to verify voids beneath the concrete roadway located at the Cumberland Gap Tunnel, in Middelsboro, KY. Premilanary results indicate that several void areas reside beneath the north and southbound tunnel. The sizes and proximity of the voids are as follows. |  |  |  |  |
| Location | Direction | Void Number | Area (S.F.) | Approximate depth in some areas (inches) |
| CP3 | Southbound | 1 | 648 | 7 |
|  | Northbound | 1 | 595 | 3 |
|  | Northbound | 2 | 534 | 3 |
|  | Northbound | 3 | 150 | 2 |
| CP 5 | Southbound | 1 | 1035 | 9 |
|  | Northbound | 1 | 623 | 3 |
|  | Northbound | 2 | 80 | 3 |
| CP 8 ½ | Southbound | 1 | 300 | 23 |
|  | Southbound | 2 | 390 | 29 |
|  | Northbound | 1 | 425 | 7 |
| 17. Key Words |  |  | 18. Distribution Statement Unlimited, with approval of the Kentucky Transportation Cabinet |  |
| 19. Security Classification (of this report) None | 20. Security Classification (of this page) None |  | 21. No. of Pages: 18 | 22. Price |

Form DOT 1700.7 (8-72) Reproduction of completed page authorized

The Kentucky Transportation Center was contacted by the Cumberland Gap Tunnel Authority in 2001 to conduct a Falling Weight Deflectormeter (FWD) test on the concrete pavement structure at two locations in the southbound tunnel that appeared to be settling. The FWD test showed at that time that the sub-grade strength was much less in the tested areas (CP 5 and CP $81 / 2$ ) than the surrounding pavement sub-grade. In 2002 the Cumberland Gap Tunnel Authority contracted with Uretek to place expansive foam material beneath the pavement at CP 5 and CP $81 / 2$ to raise the pavement structure. The foam was somewhat successful in raising the slabs back to normal elevation. After placement of the foam material both areas were tested again using the FWD. Results obtained from the FWD test indicated that no real gain in sub-grade strength was obtained by using the foam material. CP 5 and CP $81 / 2$ were tested again in 2003 and 2004 using the FWD. The FWD results from 2003 and 2004 also showed low sub-grade strengths in both areas.

In 2005 the Kentucky Transportation Center used ground penetrating radar (GPR) to identify void areas beneath the concrete pavement at CP 3, CP 5, and CP $81 / 2$ in both tunnel directions. The following results indicate the location and the approximate size/depth of the void areas at all three locations in both the north and sound bound tunnels.

| Location | Direction | Void Number | Area (S.F.) | Approximate depth in <br> some areas (inches) |
| :---: | :---: | :---: | :---: | :---: |
| CP3 | Southbound | 1 | 648 | 7 |
|  | Northbound | 1 | 595 | 3 |
|  | Northbound | 2 | 534 | 3 |
|  | Northbound | 3 | 150 | 2 |
|  |  |  |  |  |
| CP 5 | Southbound | 1 | 1035 | 9 |
|  | Northbound | 1 | 623 | 3 |
|  | Northbound | 2 | 80 | 3 |
| CP 8 $1 / 2$ | Southbound | 1 |  | 23 |
|  | Southbound | 2 | 300 | 29 |
|  | Northbound | 1 | 425 | 7 |

After compiling the test results shown above, two meetings have been held this past summer to notify concerned parties about the potential problems at the Cumberland Gap Tunnel. Those parties have consisted of Eastern Federal Lands, FHWA (KY division), and KYDOT (maintenance/operations). The attached Power-Point slides indicate the work performed by the Kentucky Transportation Center that was discussed at the two above mentioned meetings.


## Overview

- History of problems encountered to the pavement structure and inspections performed
- Ground penetrating radar inspection and results
- Areas of concern (CP 3, 5, 8 ½)
- 2 minute video of inspection
- Geology
- Discussion


## History of problems encountered to the pavement structure and inspections performed

- 2001 (CGTA) requested a pavement inspection due to possible slab settlement
- FWD testing CP 5 and $81 / 2$
- Drainage inspection of tunnel drains


History of problems encountered to the pavement structure and inspections performed (cont.)

- 2002
- (URETEK Foam was placed under the concrete pavement at CP 5 and $81 / 2$ )
- FWD testing preformed after URETEK placement
- 2003
- FWD testing preformed throughout tunnel ( 50 ft . spacing) to develop trend line of pavement subgrade strength
- 2005
- Surveyed tunnel using Ground Penetrating Radar (GPR)


## Visual of pavement settlement at CP 3 (water ponding after tunnel washing)




## Good GPR data showing pavement layers




## Multiple void areas beneath concrete pavement northbound tunnel



## CP 3 <br> tested area <br> $119+50$ to 124+50




|  |  | Northbound void length CP 3 |
| :--- | :--- | :--- | :--- | :--- | :--- |

## Void depth beneath 10 inch concrete pavement CP 3

Southbound

| Sta. \# | Lane | Void depth <br> inch |
| :---: | :---: | :---: |
| $122+77$ | R cwp | 8 |
| $122+80$ | R cwp | $75 / 8$ |
| $123+00$ | L cwp | $57 / 8$ |

Northbound

| Sta. \# | Lane | Void depth <br> inch |
| :---: | :---: | :---: |
| $122+72$ | L cwp | $21 / 4$ |




## Southbound void length CP 5

| location | lane | distance from left barrier wall | beg. <br> Station \# | end. <br> Station \# | Void <br> Length <br> (feet) |
| :---: | :---: | :---: | :---: | :---: | :---: |
| lwp | left | 4.6 | 128.49 | 129.14 | 65 |
| cwp | left | 7 | 128.55 | 129.14 | 59 |
| rwp | left | 9 | 128.66 | 129.14 | 48 |
| Iwp | right | 17.6 | 128.88 | 129.07 | 18 |
| cwp | right | 20 | 128.35 | 128.42 | 7 |
| Irwp | right | 22.3 | 128.35 | 128.45 | 10 |


| location | Northbound void length CP 5 |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | lane | distance from left barrier wall | beg. Station \# | end. <br> Station \# | $\frac{\text { Void }}{\frac{\text { Vength }}{\text { (feet) }}}$ |
| Iwp | left | 4.6 | 128.76 | 128.65 | 11 |
| Iwp | left | 4.6 | 127.40 | 127.16 | 25 |
| Iwp | left | 4.6 | 127.07 | 126.88 | 20 |
| cwp | left | 7 | 128.75 | 128.65 | 10 |
| cwp | left | 7 | 127.39 | 127.14 | 24 |
| cwp | left | 7 | 127.07 | 126.89 | 18 |
| rwp | left | 9 | 127.36 | 127.18 | 18 |
| rwp | left | 9 | 127.00 | 126.89 | 11 |
| Iwp | right | 17.6 | 127.32 | 127.19 | 14 |
| cwp | right | 20 | 127.32 | 127.17 | 16 |
| rwp | right | 22.3 | 127.42 | 127.01 | 41 |


| Void depth beneath 10 inch concrete |  |  |  |
| :--- | :--- | :--- | :---: |
| pavement CP 5 5 |  |  |  |

## CP 8 1/2 <br> tested area $137+00$ to 140+50

Mapped void area CP 8 1/2


| Southbound void length CP 8 1/2 |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| location | lane | distance from left barrier wall | beg. <br> Station \# | end. <br> Station \# | $\frac{\frac{\text { Void }}{\text { Length }}}{\text { (feet) }}$ |
| Lwp | left | 4.6 | 138.75 | 139.32 | 56 |
| Lwp | left | 4.6 | 139.54 | 139.82 | 28 |
| cwp | left | 7 | 138.77 | 139.13 | 36 |
| Cwp | left | 7 | 139.20 | 139.29 | 9 |
| cwp | left | 7 | 139.57 | 139.82 | 26 |
| Rwp | left | 9 | 138.84 | 139.09 | 26 |
| Rwp | left | 9 | 139.59 | 139.75 | 17 |
| Lwp | right | 17.6 | 138.00 | 138.11 | 11 |
| cwp | right | 20 | 138.01 | 138.14 | 14 |
| Rwp | right | 22.3 | 138.01 | 138.14 | 13 |


| Northbound void length CP 8 1/2 |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| location | lane | distance from left barrier wall | beg. <br> Station \# | end. <br> Station \# | Void <br> Length (feet) |
| lwp | left | 4.6 | 139.33 | 138.91 | 43 |
| cwp | left | 7 | 139.34 | 139.09 | 25 |
| nwp | left | 9 | 139.30 | 139.13 | 17 |
| Iwp | right | 17.6 | 0.00 | 0.00 | 0 |
| cwp | right | 20 | 0.00 | 0.00 | 0 |
| rwp | right | 22.3 | 0.00 | 0.00 | 0 |

## Void depth beneath 10 inch concrete pavement CP 8 1/2

Southbound

| Sta. \# | Lane | Void depth <br> inch |
| :---: | :---: | :---: |
| $138+98$ | L cwp | $217 / 8$ |
| $139+02$ | L cwp | $293 / 8$ |

URETEK material

| Sorthbound |  |  |
| :---: | :---: | :---: |
| Sta. \# | Lane | Void depth <br> inch |
| $139+14$ | L cwp | $71 / 8$ |



## GPR scanning of Walls in concerned areas (July 2005)



## GPR Wall scanning

- No large void areas were discovered
- Small/medium size voids were less than 12 inches from face of wall
- Believed that these void areas reside inside of the waterproof membrane



## Geology (plan view)



> Geology CP 3
> Middlesboro formation (sandstone)

- Heavy water in-flow 10-50 g.p.m. (NB tunnel)
- Numerous thin silt/sand seems (both tunnels)
- Weathered face material (both tunnels)
- Water in-flow 10-20 g.p.m. (SB tunnel)
- Clay seems, thin silt seems (SB tunnel)
- Support category IV (both tunnels)


## Geology CP 5 <br> Contact between Middlesboro and Dark Ridge

- Water in-flow 3-4 g.p.m. (SB tunnel)
- Mud/sand/water west wall 127+44 (NB tunnel)
- Water in-flow 15-20 g.p.m. (NB tunnel)
- Support category IV (both tunnels)

> Geology CP $81 / 2$
> Pennington formation (sandstone)

- Close to contact between Pennington sandstone and Newman Limestone
- 14 water-seeps, in-flow 1-5 g.p.m. (SB tunnel)
- Poorly cemented sandstone with silt stone (SB tunnel)
- Soft wet mud in areas (SB tunnel)
- 13 water-seeps, in-flow 1-5 g.p.m. (NB tunnel)
- Station $138+73,2$ inch seem of wet sandy mud (NB Tunnel)


## Discussion

